

COMPACT CORE BEARING

Static elastomeric bearing for high loads and thermal separation Load capacity up to 63 N/mm²

A LISEGA Group Company

SECURELY AND PERMANENTLY SUPPORTED INCREASE LIVING COMFORT WITH CALENBERG

KNOW

AHU

THE

IRALI

TARIA

High-value rubber material and the high quality standard of our elastomer bearings ensure freedom from maintenance, a long service life and thus absolute freedom of the structure from damage.

. Th

HHI

пнн

. 1 1

Effective façade protection

Avoid thermal bridges and lower energy costs

The compact core bearing has been used for 50 years for the transmission of very high loads between components. The hard elastomer material can bear loads of up to 63 N/mm² depending on the format.

The use of steel components is a popular stylistic device in modern architecture for building complexes and industrial halls. These include, for example, balconies, façade elements or porches. With this construction method, care must be taken in the interests of saving energy to avoid thermal bridges. Continuous steel girders from the exterior into the interior are a weak point in relation to energy losses, formation of condensation, mould growth and corrosion.

The compact core bearings are very well suited for use as thermal separation for façade constructions and cantilever components. The use of the bearing enables the user to meet increasing requirements for the minimisation of energy consumption and the associated, not inconsiderable cost savings.

PRODUCT ADVANTAGES

- Verified and validated design software (PCAE)
- Maintenance-free
- Resistant to weathering and ozone
- Extremely durable
- Very low creepage
- High-quality material
- High load capacity
- Building authority approved elastomer bearing
- Moments are transmitted according to plan

The compact core bearing

Product description

The Calenberg compact core bearing is an unreinforced elastomer bearing with smooth pressure contact surfaces. The main constituent is an aging-resistant NBR elastomer material. The purpose of the reddish-brown dyeing is for product-specific identification. The material is resistant to weathering, oil, grease, fuels and ozone, as well as abrasion and wear.

Application and areas of use

Compact core bearings are suitable for use as supports where very high loads are transmitted perpendicularly to the bearing plane. In order to avoid energy losses due to thermal bridges, the bearings are used in all areas of construction for thermal separation, e.g. in façade construction, for the installation of solar systems and heat pumps, or when connecting balconies and porches to the support structure.

Building authority approval

Usability in building construction is regulated by the general building authority approval no. Z-16.32-515, issued by the German Institute of Building Technology.

Fire behaviour

The fire protection assessment no. 3799/7357-AR issued by the Technical University of Braunschweig is to be observed in case of fire protection requirements. This assessment contains specifications for the minimum dimensions and other measures that meet the requirements of the DIN 4102-2 standard.

EXTRACT FROM TECHNICAL	DATA						
Compact Core Bearing	Bearing type	Bearing thickness [mm]	Compressive stress	Approval			
		5*		Approval no			
	Unreinforced, high-strength	10	max. $\sigma_{R,d} = 42 \text{ N/mm}^2$	Z-16.32-515, issued by the DIBt Berlin			
	ration	15					
		20	max. $\sigma_{R,d} = 63 \text{ N/mm}^2$				

* No building authority approval

Delivery forms

Calenberg core compact bearing are delivered in virtually every desired size to suit the structure. The bearings can be provided with holes, cut-outs, slots, etc.

STANDARD CUT-OUTS				
	Hole	•	Corner cut-out	
	Slot		Rectangular cut-out	
	Slot cut-ou	t	Rectangular hole	
	Angled cut			
DIMENSIONS				
Bearing thicknesses		Maximum cut blank size	Minimum cut blank size	
5*, 10, 15, 20 mm		1200 mm x 1200 mm	100 mm x 100 mm	
* No building authority approva	I	1		

Installation instructions

Prior to installation, ensure that the elastomer bearings and support surfaces are free from dirt, burrs, blowholes, ice, snow, greases, solvents, oils and release agents.

Vertical use in the area of front slab and cantilever slab connections

Horizontal use between columns and various substrates

Thermal separation using compact core bearing in the façade area

References

Extract from our customer references

COMPACT CORE BEARING

- German State Opera, Berlin, Germany
- Berlin Philharmonic Hall, Berlin, Germany
- Wesertower, Bremen, Germany
- Leipzig Zoo Giant Tropical Hall, Leipzig, Germany
- German Maritime Museum, Wilhelmshaven, Germany
- Minimundus, Klagenfurt, Austria
- Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
- Cultural Centre of the Embassy of Azerbaijan, Berlin, Germany
- Hotel Fährhaus, Norddeich North Sea resort, Germany
- Federal Ministry of Employment and Social Affairs, Bonn, Germany
- Schiphol Airport, Schiphol, The Netherlands
- Skyline Plaza, Frankfurt am Main, Germany
- Mega-Casino Ufo, Oberhausen, Germany
- RWE, Essen, Germany
- Central Bus Station (ZOB), Munich, Germany
- Gläserne Manufaktur (Transparent Factory), Dresden, Germany
- Ulmer Schokoladen, Wilhelmshaven, Germany
- Neurath Blöcke F/G Power Station, Grevenbroich, Germany

Am Knübel 2-4 31020 Salzhemmendorf | Germany

Phone + 49 5153-9400-0 Fax + 49 5153-9400-49

info@calenberg-ingenieure.de www.calenberg-ingenieure.com

The contents of this document are the result of extensive research work and application experience. All information is given to the best of our knowledge; it does not provide any assurance of properties, nor does it release the user from the duty to perform its own checks, including with regard to third-party property rights. Liability for damages, regardless of their nature and legal grounds, is excluded for advice provided by this document. We reserve the right to make technical changes in the course of product development.

A LISEGA Group Company

Compact core bearing

Transmission of high loads and thermal separation in the construction industry

Dimensioning with design values

The bearing is dimensioned in accordance with the general building authority approval up to a compressive stress $\sigma_{R,d}$ of 63 N/mm² (thickness 20 mm) and $\sigma_{R,d}$ of 42 N/mm² (thicknesses 5, 10 and 15 mm). The dimensioning concept is based on the form factor.

LOAD TYPE

Design value of the load capacity \mathbf{F}_{d}	Elastic deformation	Material properties
EQUATION		
For t ≤ 15 mm $\sigma_{perm} = 16.2 \cdot S^{0.75} \le 42 \text{ [N/mm2]}$ For t = 20 mm $\sigma_{perm} = 34.2 \cdot S^{0.7} \le 63 \text{ [N/mm2]}$	see page 4	Coefficient of thermal conductivity λ : 0.2 [W/(m*K)] Surface resistivity according to EN 20284: 7.5 \cdot 10 ¹⁰ Ω Volume resistivity according to IEC 93: 2.1 \cdot 10 ¹² Ω cm
Form factor S, see page 2		

KEY TO EQUATION SYMBOLS

Fd Ae S	Vertical force Bearing area Form factor, ratio of compressed bearing area A _r to unloaded body area	σ _{R,d} t Δt	Design value of the load capacity Bearing thickness Elastic deformation
a ₁	Shorter bearing side	\wedge	Inermal conductivity
b ₁	Longer bearing side		
а	Component width		
b	Component length		

Compact core bearing

Transmission of high loads and thermal separation in the construction industry

Calculation of the form factor

The form factor S, as the ratio of the compressed area to the freely formable area, is taken for the dimensioning of unreinforced elastomeric bearings. The permissible compressive stress in relation to the bearing dimensions is calculated with the form factor S.

Compact core bearing

Transmission of high loads and thermal separation in the construction industry

Thicknesses: 5, 10 and 15 mm

Note: For t = 5 mm, $\sigma_{_{R,d}}$ = 42 mm². This tabular overview is not shown here.

The table below shows the design value of the load capacity and the permissible angle of rotation in relation to the bearing dimensions. Intermediate values may be interpolated.

BEARING		DESIGN VALUE OF THE LOAD CAPACITY, $\sigma_{\mbox{\tiny Rd}}$ [N/mm ²]															
Thickness	Width	BEARII	BEARING LENGTH [mm]														
[mm]	[mm]	100	110	120	130	140	150	175	200	225	250	275	300	350	400	450	500
	100	32.2	33.4	34.4	35.3	36.2	36.9	38.6	40.0	41.1			^	^	^		
	110	33.4	34.6	35.7	36.7	37.7	38.5	40.4	41.9								
	120	34.4	35.7	36.9	38.0	39.0	40.0			-							
	130	35.3	36.7	38.0	39.2	40.3	41.3										
	140	36.2	37.7	39.0	40.3	41.5											
10	150	36.9	38.5	40.0	41.3		-										
	160	37.6	39.3	40.8													
	175	38.6	40.4														
	200	40.0	41.9														
	250			-													U
	300																

BEARING		DESIGN VALUE OF THE LOAD CAPACITY, $\sigma_{R,d}$ [N/mm ²]															
Thickness	Width	BEARI	BEARING LENGTH [mm]														
[mm]	[mm]	100	110	120	130	140	150	175	200	225	250	275	300	350	400	450	500
	100	23.8	24.6	25.4	26.1	26.7	27.2	28.5	29.5	30.3	31.1	31.7	32.2	33.1	33.8	34.4	34.9
	110	24.6	25.5	26.4	27.1	27.8	28.4	29.8	30.9	31.8	32.7	33.4	34.0	35.0	35.8	36.4	37.0
	120	25.4	26.4	27.2	28.1	28.8	29.5	31.0	32.2	33.3	34.1	34.9	35.6	36.7	37.6	38.4	39.0
	130	26.1	27.1	28.1	28.9	29.7	30.5	32.1	33.4	34.6	35.5	36.4	37.1	38.4	39.4	40.2	40.9
	140	26.7	27.8	28.8	29.7	30.6	31.4	33.1	34.5	35.8	36.8	37.8	38.6	40.0	41.1		
	150	27.2	28.4	29.5	30.5	31.4	32.2	34.0	35.6	36.9	38.1	39.1	40.0	41.5			
15	160	27.8	29.0	30.1	31.1	32.1	33.0	34.9	36.6	38.0	39.2	40.3	41.3				
15	175	28.5	29.8	31.0	32.1	33.1	34.0	36.2	37.9	39.5	40.8						
	200	29.5	30.9	32.2	33.4	34.5	35.6	37.9	40.0	41.7							
	250	31.1	32.7	34.1	35.5	36.8	38.1	40.8									
	300	32.2	34.0	35.6	37.1	38.6	40.0										
	350	33.1	35.0	36.7	38.4	40.0	41.5										F D
	400	33.8	35.8	37.6	39.4	41.1											
	450	34.4	36.4	38.4	40.2												

Compact core bearing Transmission of high loads and thermal separation in the construction industry

Thickness: 20mm

BEARING		DESIG	N VALUE	E OF THE	E LOAD (CAPACIT	Ύ, σ _{R,d} [Ν	\/mm²]									
Thickness	Width	BEARI	BEARING LENGTH [mm]														
[mm]	[mm]	100	110	120	130	140	150	175	200	225	250	275	300	350	400	450	500
	100	40.0	41.3	42.5	43.6	44.5	45.4	47.3	48.9	50.2	51.3	52.3	53.1	54.5	55.6	56.4	57.2
	110	41.3	42.7	44.0	45.2	46.3	47.2	49.4	51.1	52.5	53.8	54.9	55.8	57.3	58.6	59.6	60.4
	120	42.5	44.0	45.4	46.7	47.8	48.9	51.2	53.1	54.7	56.1	57.3	58.3	60.0	61.4	62.5	
	130	43.6	45.2	46.7	48.0	49.3	50.4	52.9	55.0	56.7	58.2	59.5	60.7	62.6			
	140	44.5	46.3	47.8	49.3	50.6	51.8	54.5	56.7	58.6	60.2	61.6	62.9				
	150	45.4	47.2	48.9	50.4	51.8	53.1	55.9	58.3	60.3	62.1						
	160	46.2	48.1	49.9	51.5	52.9	54.3	57.3	59.8								
	175	47.3	49.4	51.2	52.9	54.5	55.9	59.2	61.9								
20	200	48.9	51.1	53.1	55.0	56.7	58.3	61.9									
	250	51.3	53.8	56.1	58.2	60.2	62.1										
	300	53.1	55.8	58.3	60.7	62.9											
	350	54.5	57.3	60.0	62.6												
	400	55.6	58.6	61.4													
	450	56.4	59.6	62.5													
	500	57.2	60.4												1-2		
	550	57.8	61.1												-5		
	600	58.3	61.7														

Spring characteristic

Compact core bearing

Transmission of high loads and thermal separation in the construction industry

Dimensioning

Static dimensioning of a thermal separation layer of the type core compact bearing using the method according to the article in Bauingenieur 11/2005 "Dimensioning of front slab connections with elastomer intermediate layers", Prof. Dr. L. Nasdala, B. Hohn, R. Rühl

GEOMETRY

Dimensions of front slab

- Height of the front slab h_p
- Width of the front slab b_p
- Number of holes n
- Diameter of the holes d
- Vertical distance between the holes e₂

Selected edge distance* d_r

This produces the

- Height of the thermal separation layer h_e
 h_e = h_p 2 d_r
- Width of the thermal separation layer b_e b_e = b_p - 2 d_r

Thickness of the thermal separation layer te

*) Calenberg Ingenieure recommends an edge distance between the thermal separation layer and the edge of the front slab that corresponds to the thickness of the thermal separation layer. This is done for visual reasons rather than structural ones and is intended to avoid the bulging of the core compact bearing out of the bearing joint.

LOADS

Design moment (positive value means pressure on the lower half of the component) $M_{\nu,d}$ Design normal force (negative value means compressive force) N_d Prestress force per bolt F_s

Characteristic level is applied on account of the bolt prestress force

This produces

- the characteristic moment $M_v = M_{v,d} / 1.4$
- the characteristic normal force $N = N_d / 1.4$

CALCULATION OF THE EXISTING STRESS σ_{exist}

Zero stress line z₀:

$$z_0 = \frac{n * F_s - N}{12 M_v} h_e^2$$

Case a):

 $|z_0| > h_e/2 \rightarrow$ Zero stress line outside the cross-section \rightarrow Only compressive stress in the cross-section

Effective height h_m:

 $h_m = h_e + \frac{2M_y}{N - n * F_s}$

Existing characteristic compressive stress σ_{exist} :

 $\sigma_{exist} = \frac{(N - n * F_s)^2}{b_e \left[h_e \left(N - n * F_s\right) + 2 M_y\right]}$

Existing design compressive stress $\sigma_{\text{exist,d}}$:

 $\sigma_{exist,d} = 1.4 * \sigma_{exist}$

Compact core bearing

Transmission of high loads and thermal separation in the construction industry

Dimensioning

Case b):

 $|z_0| \le h_e/2 \rightarrow$ Zero stress line inside the cross-section \rightarrow Tensile and compressive stresses in the cross-section

Bolt tensile stress F:

$$F = \frac{N - n * F_{s}}{h_{e}} \left(\frac{h_{e}}{2} - Z_{0}\right) + \frac{6 M_{\gamma}}{h_{e}^{3}} \left(\frac{h_{e}^{2}}{4} - Z_{0}^{2}\right)$$

$$h_m = h_e + \frac{2 M_y - F * e_2}{N - n * F_s - F}$$

Existing characteristic compressive stress σ_{exist} :

 $\sigma_{exist} = \frac{(N - n * F_{s,d} - F)^2}{b_e [h_e (N - n * F_s - F) + 2 M_y - F * e_2]}$

Existing design compressive stress $\sigma_{exist,d}$:

 $\sigma_{\text{exist,d}} = 1.4 \star \sigma_{\text{exist}}$

CALCULATION OF THE PERMISSIBLE STRESS $\sigma_{{\sf perm.d}}$

Form factor S (ratio of the compressed area to the body area)

Is $h_m \le 2/3 h_e$? \rightarrow yes \rightarrow no		
If yes: Assumption: only one bolt row in pressure area	$S = \frac{h_m \star b_e - \pi \frac{d^2}{2}}{2t_e (h_m + b_e + \pi d)}$	
	$\sigma_{perm,d} = 16.2 * S^{0,75} \le 42 \text{ N/mm}^2$	for t < 20 mm
	$\sigma_{\text{nerm d}} = 34.2 * S^{0.7} \le 63 \text{ N/mm}^2$	for t = 20 mm

Comparison of existing stress and permissible stress: If $\sigma_{\text{perm,d}} \ge \sigma_{\text{exist,d}}$ proof is provided!

If no: Assumption: all bolts in pressure area
$$\begin{split} S &= \frac{h_{m} * b_{e} - n\pi \frac{d^{2}}{4}}{t_{e} (2h_{m} + 2b_{e} + n\pi d)} \\ \sigma_{\text{perm},d} &= 16.2 * S^{0.75} \leq 42 \text{ N/mm}^{2} \quad \text{for } t < 20 \text{ mm} \\ \sigma_{\text{perm},d} &= 34.2 * S^{0.7} \leq 63 \text{ N/mm}^{2} \quad \text{for } t = 20 \text{ mm} \end{split}$$

Comparison of existing stress and permissible stress: If $\sigma_{\text{perm},d} \ge \sigma_{\text{exist},d}$ proof is provided!

QR-CODES FOR THE MANUALS FOR THE DIMENSIONING SOFTWARE PCAE

Bending joint with thermal separation layer Program 4h-ec3tt

Rigid girder connection Program 4h-ec3bt

CALENBERG

The contents of this document are the result of extensive research work and application experience. All information is given to the best of our knowledge; it does not provide any assurance of properties, nor does it release the user from the duty to perform its own checks, including with regard to third-party property rights. Liability for damages, regardless of their nature and legal grounds, is excluded for advice provided by this document. We reserve the right to make technical changes in the course of product development.

 $^{\odot}$ Copyright – Calenberg Ingenieure GmbH – 2025