

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0799 of 25 November 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

ZENTOR® - Rebar Splicing System

Couplers for mechanical splices of reinforcing steel bars

DUCA Systems AG Allmendstrasse 2 8105 Regensdorf SCHWEIZ

DUCA Systems AG Allmendstrasse 2 8105 Regensdorf SCHWEIZ

22 pages including 3 annexes which form an integral part of this assessment

EAD 160129-00-0301, Edition 01/2020

European Technical Assessment ETA-21/0799

Page 2 of 22 | 25 November 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z93641.21 8.03.01-66/21

European Technical Assessment ETA-21/0799

Page 3 of 22 | 25 November 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The ZENTOR® - Rebar Splicing System is used as a mechanical, screwed system for connecting reinforcing bars in reinforced concrete components and for connecting to steel components under static or quasi-static, fatigue and low cycle loading.

The product description is given in Annex A.

The characteristic material values, dimensions and tolerances of ZENTOR® - Rebar Splicing System not indicated in Annexes A1 to A8 shall correspond to the respective values laid down in the technical documentation^[1] of this European technical assessment.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the ZENTOR® - Rebar Splicing System is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the ZENTOR® - Rebar Splicing System of at least 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Resistance to static or quasi-static loading	See Annex C1 – C7
Slip under static or quasi-static load	See Annex C1 – C7
Slip after static or quasi-static load	See Annex C1 – C7
Fatigue strength for N = 2 · 10 ⁶ load cycles	See Annex C1
Fatigue strength for S-N curve with k ₁ and k ₂ according to EN 1992-1-1	No performance assessed
Fatigue strength for S-N curve with specific k ₁ and k ₂	No performance assessed
Resistance to low cycle loading (seismic actions)	See Annex C1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Class A1		

The technical documentation of this European technical assessment is deposited at the Deutsches Institut für Bautechnik and, as far as relevant for the tasks of the approved bodies involved in the attestation of conformity procedure, is handed over to the approved bodies.

Z93641.21 8.03.01-66/21

European Technical Assessment ETA-21/0799

Page 4 of 22 | 25 November 2021

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD 160129-00-0301 the applicable European legal act is: 2000/606/EC. The system to be applied is: 1+

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

The following standards are referred to in this European Technical Assessment:

EN 1090-1:2009 + A1:2011 Execution of steel structures and aluminium structures - Part 1: Requirements for conformity assessment of structural components
 EN 1992-1-1:2004 + AC:2010 + A1:2014

Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings

EN 1998–1:2004 + AC:2009 + A1:2013

Eurocode 8: Design of structures for earthquake resistance -

Part 1: General rules, seismic actions and rules for buildings

- EN ISO 9606-1:2013 Qualification testing of welders - Fusion welding - Part 1: Steels

(ISO 9606-1:2012, including Cor 1:2012)

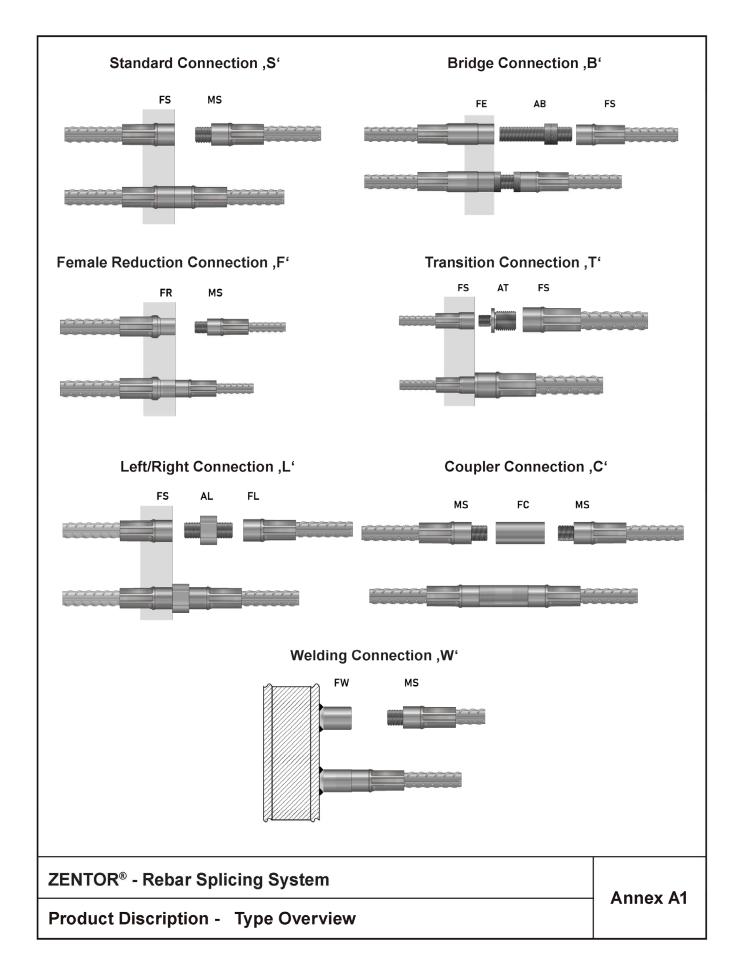
EN ISO 12944-5:2019 Paints and varnishes - Corrosion protection of steel structures by

protective paint systems - Part 5: Protective paint systems

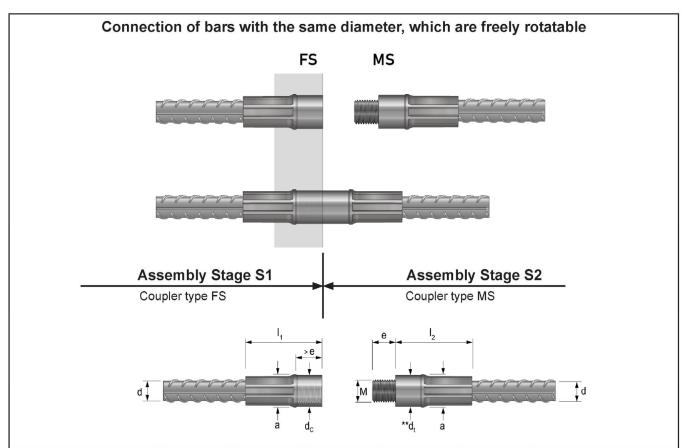
(ISO 12944-5:2019)

EN ISO 15609-1:2019 Specification and qualification of welding procedures for metallic

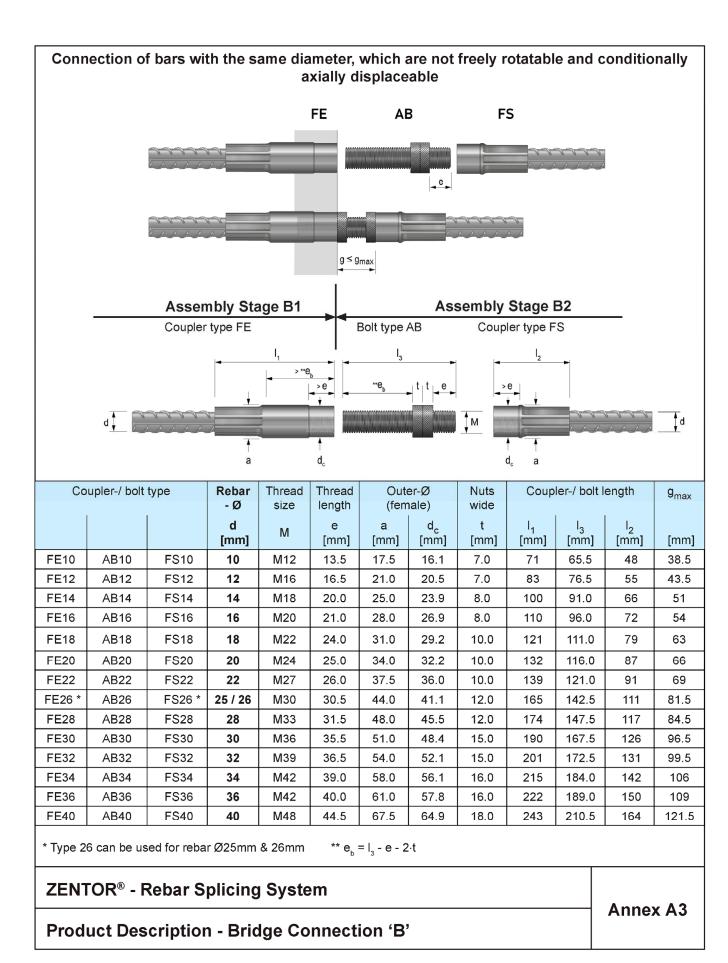
materials - Welding procedure specification - Part 1: Arc welding


(ISO 15609-1:2019)

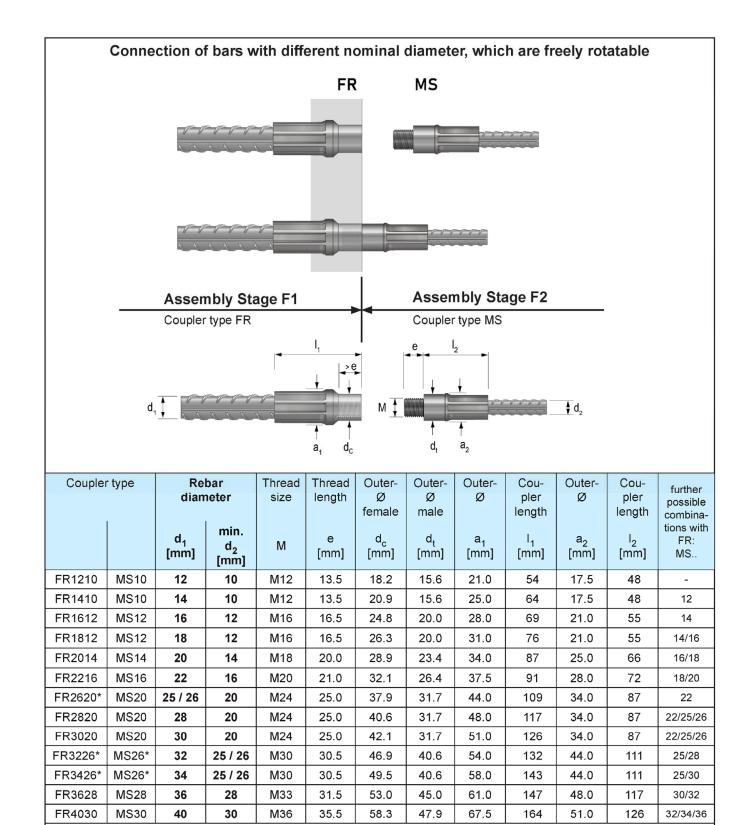
Issued in Berlin on 25 November 2021 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock beglaubigt:
Head of Section Kisan

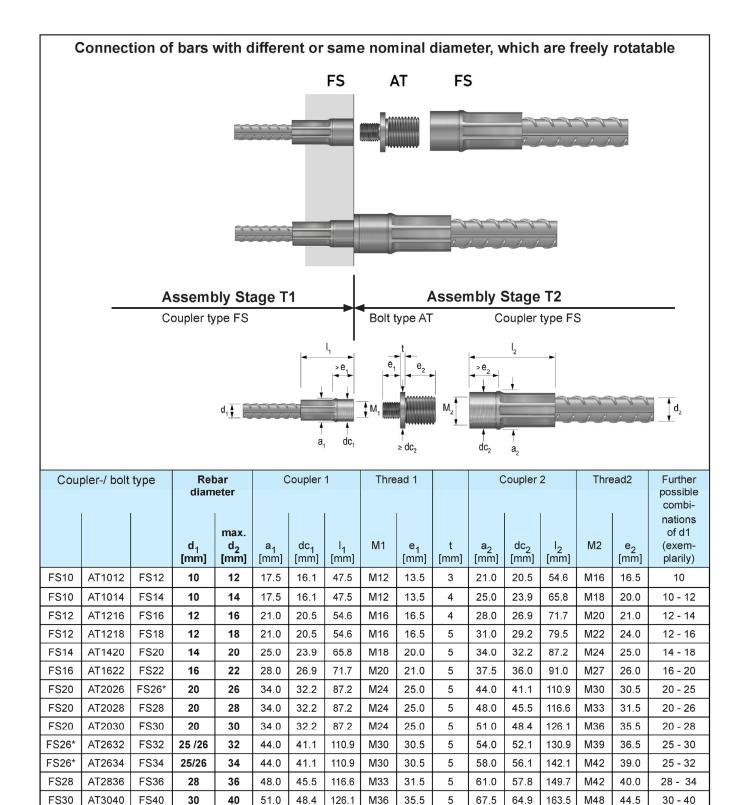
Z93641.21 8.03.01-66/21


Couple	Coupler type		Thread size	Thread length	Outer-Ø	Outer-Ø (female)	Couple	r length
		d [mm]	M	e [mm]	a [mm]	d _c [mm]	l ₁ [mm]	l ₂ [mm]
FS10	MS10	10	M12	13.5	17.5	16.1	48	48
FS12	MS12	12	M16	16.5	21.0	20.5	55	55
FS14	MS14	14	M18	20.0	25.0	23.9	66	66
FS16	MS16	16	M20	21.0	28.0	26.9	72	72
FS18	MS18	18	M22	24.0	31.0	29.2	79	79
FS20	MS20	20	M24	25.0	34.0	32.2	87	87
FS22	MS22	22	M27	26.0	37.5	36.0	91	91
FS26 *	MS26 *	25 / 26	M30	30.5	44.0	41.1	111	111
FS28	MS28	28	M33	31.5	48.0	45.5	117	117
FS30	MS30	30	M36	35.5	51.0	48.4	126	126
FS32	MS32	32	M39	36.5	54.0	52.1	131	131
FS34	MS34	34	M42	39.0	58.0	56.1	142	142
FS36	MS36	36	M42	40.0	61.0	57.8	150	150
FS40	MS40	40	M48	44.5	67.5	64.9	164	164

^{*} Type 26 can be used for rebar Ø25mm & 26mm


^{**} Dimension $d_t = d_c - 0.50$ mm

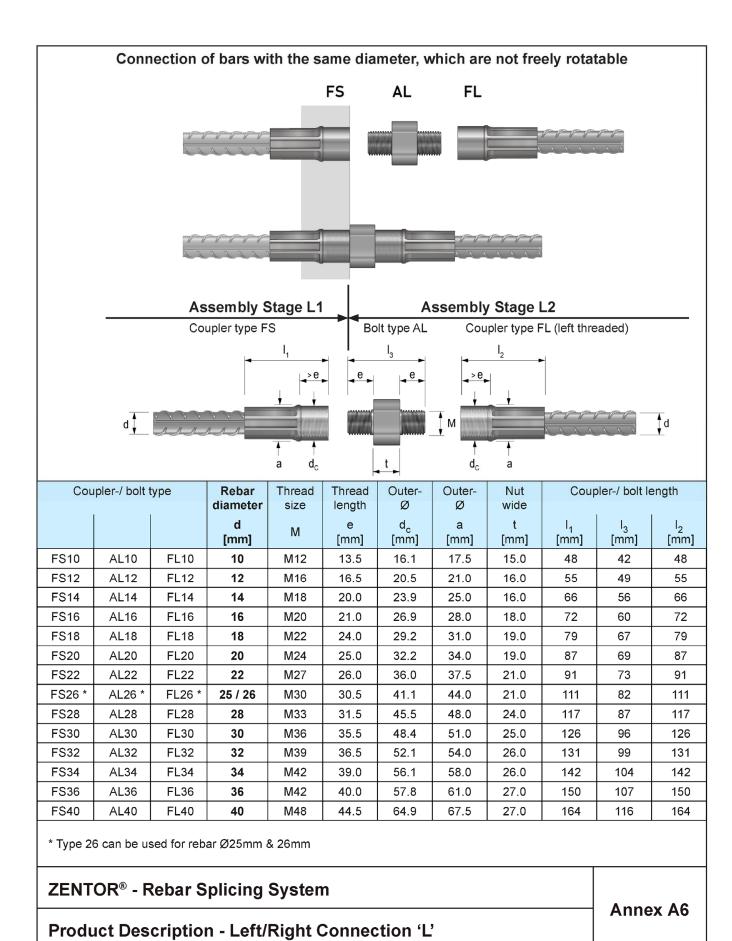
ZENTOR® - Rebar Splicing System	Annov A2
Product Description - Standard Connection 'S'	Annex A2



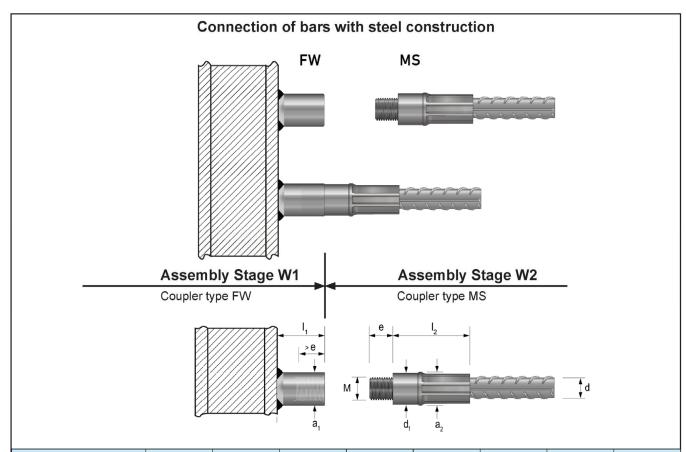
^{*} Type 26 can be used for rebar Ø25mm & 26mm

ZENTOR® - Rebar Splicin	g System	Annay A4
Product Description - Fe	male Reduction 'F'	Annex A4

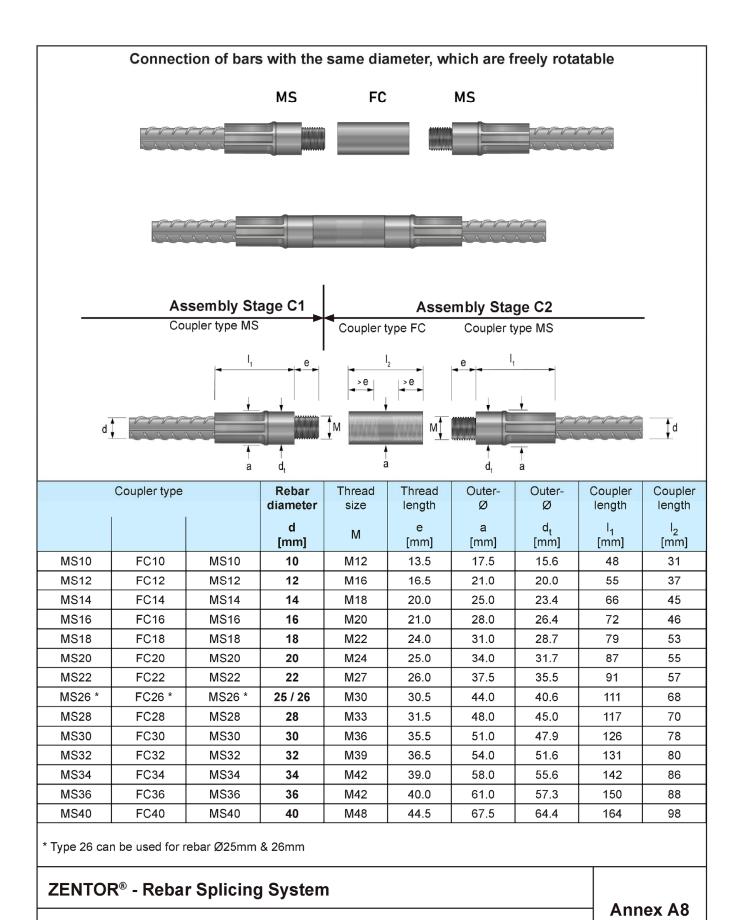
^{*} Type 26 can be used for rebar Ø25mm & 26mm


With the appropriate transition bolt type "AT", female ZENTOR® couplers of any size can be connected to one another.

ZENTOR® - Rebar Splicing System


Product Description - Coupler Transition Connection 'T'

Annex A5



Coupler type		Rebar diameter	Thread	Thread	Outer-Ø	Outer-Ø	Coupler	Outer-Ø	Coupler
		d d [mm]	size M	length e [mm]	d _t [mm]	a ₁ [mm]	length I ₁ [mm]	a ₂ [mm]	length I ₂ [mm]
FW10	MS10	10	M12	13.5	15.6	20.0	31	17.5	48
FW12	MS12	12	M16	16.5	20.0	22.0	35	21.0	55
FW14	MS14	14	M18	20.0	23.4	26.0	39	25.0	66
FW16	MS16	16	M20	21.0	26.4	30.0	41	28.0	72
FW18	MS18	18	M22	24.0	28.7	32.0	45	31.0	79
FW20	MS20	20	M24	25.0	31.7	35.0	46	34.0	87
FW22	MS22	22	M27	26.0	35.5	40.0	48	37.5	91
FW26 *	MS26 *	25 / 26	M30	30.5	40.6	45.0	54	44.0	111
FW28	MS28	28	M33	31.5	45.0	50.0	55	48.0	117
FW30	MS30	30	M36	35.5	47.9	52.0	60	51.0	126
FW32	MS32	32	M39	36.5	51.6	58.0	61	54.0	131
FW34	MS34	34	M42	39.0	55.6	60.0	65	58.0	142
FW36	MS36	36	M42	40.0	57.3	64.0	66	61.0	150
FW40	MS40	40	M48	44.5	64.4	70.0	73	67.5	164

^{*} Type 26 can be used for rebar Ø25mm & 26mm

ZENTOR® - Rebar Splicing System	A mmov A 7
Product Description - Welding Connection 'W'	Annex A7

Product Description - Coupler Connection 'C'

English translation prepared by DIBt

Intended Use

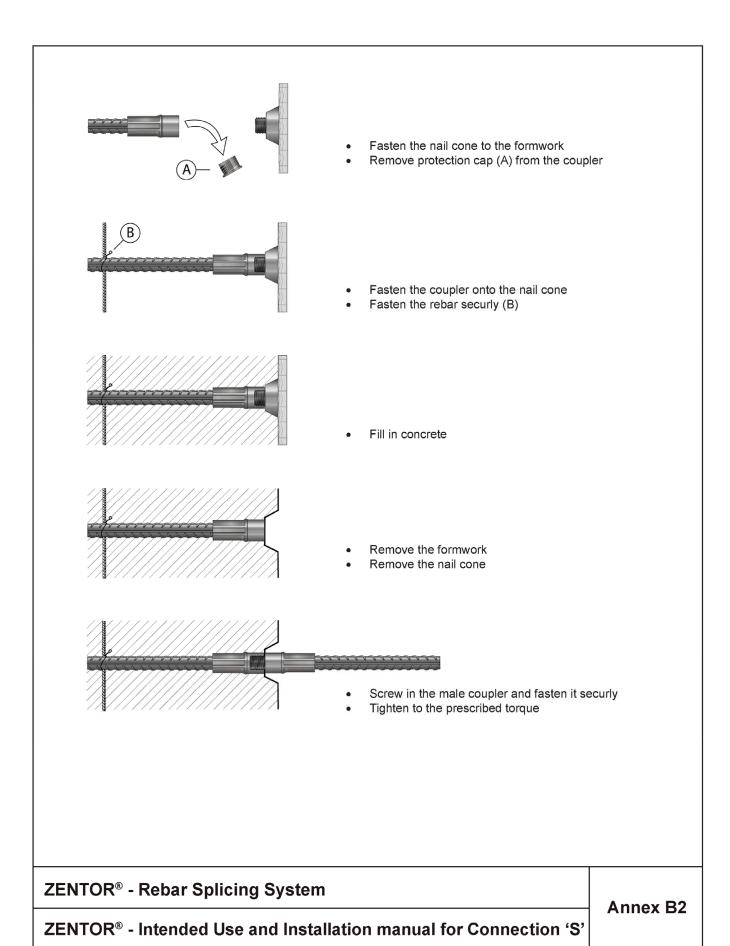
Mechanical Splicing System ZENTOR® according to EN 1992-1-1 and EN 1998-1 and Annex C.

- Transmission of static or quasi-static tension and compression loads according to EN 1992-1-1, clauses 8.7 and 8.8(4)
- Limitation of slip according to EN 1992-1-1, clause 7.3
- Transmission of high-cycle fatique loads with fatigue resistance according to EN 1992-1-1, clause 6.8.4
- Resistance to low-cycle seismic loading according to EN 1998-1, clause 5.6.3(2)
- Welding Connection "W" is used to connect reinforcing steel bars with steel components. The load transmission
 from the reinforcing steel bar to the steel component via the welds has to be verified for each case by responsible
 engineer.

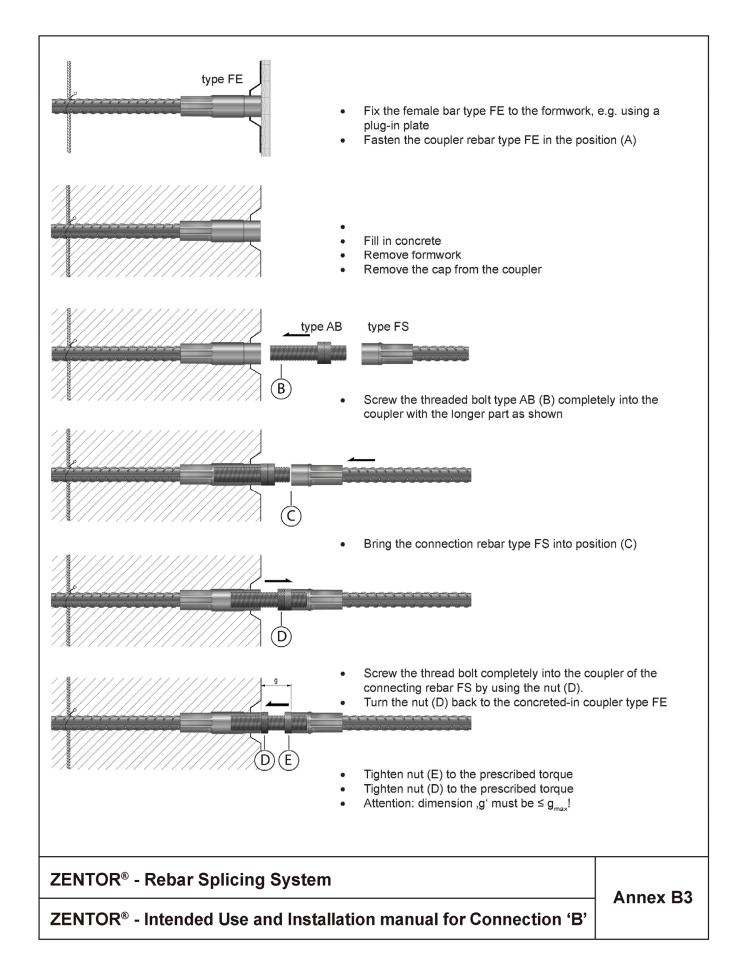
Installation Requirements

- Mechanical splices with ZENTOR® may be loaded up to 100% in the same way as non-spliced bar under static and quasi-static tensile and compression load, EN 1992-1-1, 8.7.2 (4) applies.
- With regard to the concrete cover to the outer edge of a coupler and the clear distance between two adjacent Coupler surfaces, the same values apply as for non-lapped bars according to EN 1992-1-1. Installation of the Splicing Systems ZENTOR® shall be done by trained staff and under the supervision of supervisor.
- Rebar coupler ZENTOR® are only allowed to connect with other ZENTOR® Rebar coupler.
- Before assembly, the threads shall be checked for damage. Only threads of the same size may be screwed together.
- Appropriate measures shall be taken to prevent cement or other contaminants from penetrating the female couplers.
- Bends in the rebar may only begin from a minimum distance of 5x rebar diameter, measured between the coupler the beginning of the bend.
- Installation of Rebar Splicing System acc. to Installation manual, Annex B2 and B3
- All threads shall be protected against penetration of water and dirt.
- In order to connect the Welding connection to a steel component, a welding procedure Specification WPS in accordance with EN ISO 15609-1 shall be available and shall be observed by the welding personnel. The welding manufacturer shall submit a welding certificate in accordance with the EN 1090-1, Table B.1. The welders must have valid welder's test certificates in accordance with EN ISO 9606-1 The welding coupler and the steel component shall be protected against corrosion in accordance with the applicable provisions, see EN ISO 12944-5.

Rebar Splicing System ZENTOR® must be tightened with the torque related to the diameter after assembly.


Rebar diameter [mm]		10/12	14/16	18/20	22	25/26	28/30/32	34/36	40
Torque	[Nm]	60	80	100	140	200	240	260	280

It must be ensured that the torque wrenches are calibrated and comply with the normative specifications.


ZENTOR® - Rebar Splicing System	Annex B1
ZENTOR® - Intended Use and Installation Requirements	Allilex B1

794038 21 8 03 01-66/21

ZENTOR® - Standard Connection ,S' with Rebar B500B / B550B Slip value Туре Combination Slip value Resistance to low-cycle loading Nom. Length Resistance to Fatique (seismic action) for B500B / B550B under static or strength after quasi-static diameter static or static or quasi-static quasi-static loading for $N = 2 \cdot 10^6$ B500B/B550B loading loading (tension and compression) ****) ***) **) *) $^{\Delta\sigma}\mathsf{Rsk}$ d 1 u₂₀ s₁ s_2 F_{u,min} ^fu,min,bar,outside [mm] [mm] [mm] [N/mm²] [N/mm²] [mm] [mm] [kN] 42.4 / 46.7 **S10** FS10-MS10 0.10 62.4 **S12** 12 110 FS12-MS12 0.11 61.1 / 67.2 **S14** 14 132 FS14-MS14 0.12 83.1 / 91.4 **S16** 16 144 FS16-MS16 0.12 108.6 / 119.4 0.20 137.4 / 151.2 **S18** 158 FS18-MS18 0.13 18 54.6 **S20** 174 FS20-MS20 0.14 169.9 / 186.6 20 **S22** 22 182 FS22-MS22 0.14 205.3 / 225.8 540 / 594 < 0.10 **S26** 25 / 26 222 FS26-MS26 0.16 286.7 / 315.4 **S28** 28 234 FS28-MS28 0.17 50.7 **S30** 30 252 FS30-MS30 0.18 **S32** 32 262 FS32-MS32 0.18 no performance assessed **S34** 34 284 FS34-MS34 0.19 **S36** 36 300 FS36-MS36 0.20 46.8

0.20

FS40-MS40

****)
$$F_{u,min} = (\pi \cdot d^2) / 4 \cdot f_{u,min}$$

328

40

S40

ZENTOR® - Rebar Splicing System	Annex C1
Performance Parameter for Connection 'S'	Aillex O1

^{*)} $f_{u,min,bar,outside} = f_{yk} \cdot 1$, 08 with $f_{yk} = 500 \text{ N/mm}^2$ (B500B), resp. with $f_{vk} = 550 \text{ N/mm}^2$ (B550B)

^{**)} Slip within the connection under loading measured at $0.6 \cdot f_{vk}$

Slip within the connection after loading measured at $0.02 \cdot f_{vk}$

^{*)} $f_{u,min,bar,outside} = f_{yk} \cdot 1$, 08 with $f_{yk} = 500 \text{ N/mm}^2$ (B500B), resp. with $f_{yk} = 550 \text{ N/mm}^2$ (B550B)

^{***)} Slip within the connection after loading measured at $0.02 \cdot f_{yk}$

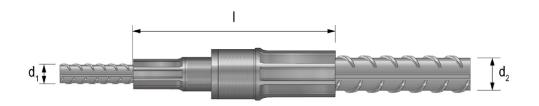
ZENTOR® - Rebar Splicing System	Ammay C2
Performance Parameter for Connection 'B'	Annex C2

^{**)} Slip within the connection under loading measured at $0.6 \cdot f_{vk}$

$\rm ZENTOR^{\scriptscriptstyle (\!0\!)}$ - Female Reduction Connection ,F' with Rebar B500B / B550B

Туре	Nominal diameter				Length	Combination	Slip value under static or quasi-static loading	Resistance to static or quasi-static loading for B500B/B550B (tension and compression)	Slip value after static or quasi-static loading
	d ₁ [mm]	d ₂ [mm]	 mm]		s ₁ [mm]	^f u,min,bar,outside [N/mm²]	s ₂ [mm]		
F1210	12	10	102	FR1210-MS10	0.10				
F1410	14	10	112	FR1410-MS10	0.11				
F1612	16	12	124	FR1612-MS12	0.11				
F1812	18	12	131	FR1812-MS12	0.12				
F2014	20	14	153	FR2014-MS14	0.13				
F2216	22	16	163	FR2216-MS16	0.13				
F2620	25 / 26	20	196	FR2620-MS20	0.15	540 / 594	< 0.10		
F2820	28	20	204	FR2820-MS20	0.15				
F3020	30	20	213	FR3020-MS20	0.16				
F3226	32	25 / 26	243	FR3226-MS26	0.17				
F3426	34	25 / 26	254	FR3426-MS26	0.18				
F3628	36	28	264	FR3628-MS28	0.18				
F4030	40	30	290	FR4030-MS30	0.20				

^{*)} $f_{u,min,bar,outside} = f_{yk} \cdot 1$, 08 with $f_{yk} = 500 \text{ N/mm}^2$ (B500B), resp. with $f_{yk} = 550 \text{ N/mm}^2$ (B550B)


ZENTOR® - Rebar Splicing System	Annex C3
Performance Parameter for Connection 'F'	Annex C3

^{**)} Slip within the connection under loading measured at $0.6 \cdot f_{vk}$

^{***)} Slip within the connection after loading measured at $0.02 \cdot f_{yk}$

ZENTOR® - Transition Connection ,T' with Rebar B500B / B550B

Туре		ninal neter	Length	Combination	Slip value under static or quasi-static loading	Resistance to static or quasi-static loading for B500B/B550B (tension and compression)	Slip value after static or quasi-static loading
	d ₁ [mm]	d ₂ [mm]	l [mm]		s ₁ [mm]	^f u,min,bar,outside [N/mm²]	s ₂ [mm]
T1012	10	12	106	FS10-AT1012-FS12	0.10		
T1014	10	14	118	FS10-AT1014-FS14	0.11		
T1216	12	16	131	FS12-AT1216-FS16	0.12		
T1218	12	18	139	FS12-AT1218-FS18	0.12		
T1420	14	20	158	FS14-AT1420-FS20	0.13		
T1622	16	22	168	FS16-AT1622-FS22	0.13		
T2026	20	25 / 26	203	FS20-AT2026-FS26	0.15	540 / 594	< 0.10
T2028	20	28	209	FS20-AT2028-FS28	0.15		
T2030	20	30	218	FS20-AT2030-FS30	0.16		
T2632	25 / 26	32	247	FS26-AT2632-FS32	0.17		
T2634	25 / 26	34	258	FS26-AT2634-FS34	0.18		
T2836	28	36	271	FS28-AT2836-FS36	0.19		
T3040	30	40	295	FS30-AT3040-FS40	0.20		

^{*)} $f_{u,min,bar,outside} = f_{yk} \cdot 1$, 08 with $f_{yk} = 500 \text{ N/mm}^2$ (B500B), resp. with $f_{yk} = 550 \text{ N/mm}^2$ (B550B)

ZENTOR® - Rebar Splicing System	Annex C4
Performance Parameter for Connection 'T'	Annex C4

^{**)} Slip within the connection under loading measured at $0.6 \cdot f_{yk}$

^{***)} Slip within the connection after loading measured at $0.02 \cdot f_{yk}$

ZENTOR® - Left/Right Connection ,L' with Rebar B500B / B550B ı Туре Length Combination Slip value Nom. Slip value Resistance to under static or after quasi-static static or diameter static or quasi-static quasi-static loading for B500B/B550B loading loading (tension and compression) **) ***) *) d 1 s₁ s_2 ^fu,min,bar,outside [mm] [mm] [mm] $[N/mm^2]$ [mm] L10 FS10-AL10-FL10 0.11 10 111 L12 12 126 FS12-AL12-FL12 0.11 L14 14 148 FS14-AL14-FL14 0.12 L16 16 162 FS16-AL16-FL16 0.13 L18 177 FS18-AL18-FL18 18 0.14 L20 FS20-AL20-FL20 20 193 0.15 L22 22 203 FS22-AL22-FL22 0.15 540 / 594 < 0.10 L26 25 / 26 243 FS26-AL26-FL26 0.17 L28 258 28 FS28-AL28-FL28 0.18 L30 30 277 FS30-AL30-FL30 0.19 L32 32 288 F\$32-AL32-FL32 0.19 L34 34 310 FS34-AL34-FL34 0.20 L36 36 327 FS36-AL36-FL36 0.20

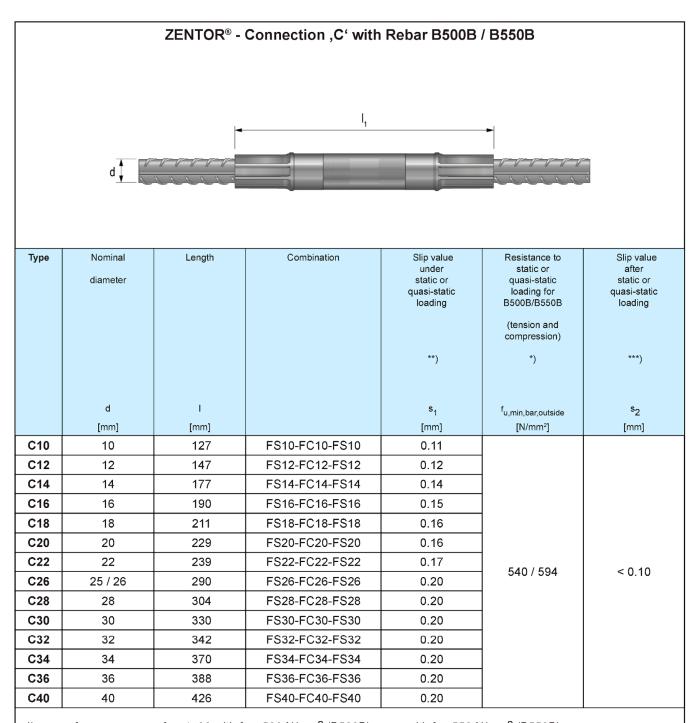
FS40-AL40-FL40

355

40

L40

^{***)} Slip within the connection after loading measured at $0.02 \cdot f_{vk}$


ZENTOR® - Rebar Splicing System	
Performance Parameter for Connection 'L'	Annex C5

0.20

^{*)} $f_{u,min,bar,outside} = f_{yk} \cdot 1$, 08 with $f_{yk} = 500 \text{ N/mm}^2$ (B500B), resp. with $f_{yk} = 550 \text{ N/mm}^2$ (B550B)

^{**)} Slip within the connection under loading measured at $0.6 \cdot f_{vk}$

^{*)} $f_{u,min,bar,outside} = f_{yk} \cdot 1$, 08 with $f_{yk} = 500 \text{ N/mm}^2 \text{ (B500B)}$, resp. with $f_{yk} = 550 \text{ N/mm}^2 \text{ (B550B)}$

^{***)} Slip within the connection after loading measured at $0.02 \cdot f_{yk}$

ZENTOR® - Rebar Splicing System	A 00
Performance Parameter for Connection 'C'	Annex C6

^{**)} Slip within the connection under loading measured at $0.6 \cdot f_{yk}$

ZENTOR® - Welding Connection ,W' with Rebar B500B / B550B 1 Туре Nominal Combination Slip value Length Slip value Resistance to after static or under static or quasi-static diameter static or quasi-static quasi-static loading for B500B/B550B loading loading (tension and compression) **) *) ***) d s₁ s_2 ^fu,min,bar,outside [N/mm²] [mm] [mm] [mm] [mm] W10 10 FW10-FS10 0.10 79 W12 12 90 FW12-FS12 0.10 W14 14 105 FW14-FS14 0.10 W16 16 113 FW16-FS16 0.10 W18 124 FW18-FS18 0.10 18 W20 20 133 FW20-FS20 0.10 W22 22 139 FW22-FS22 0.10 540 / 594 < 0.10 W26 25 / 26 165 FW26-FS26 0.11 W28 28 172 FW28-FS28 0.11 W30 30 186 FW30-FS30 0.11 W32 32 192 FW32-FS32 0.12 W34 34 207 FW34-FS34 0.12 W36 36 216 FW36-FS36 0.13

FW40-FS40

0.13

237

W40

^{***)} Slip within the connection after loading measured at $0.02 \cdot f_{vk}$

ZENTOR® - Rebar Splicing System	Annex C7
Performance Parameter for Connection 'W'	Ailliex O1

^{*)} $f_{u,min,bar,outside} = f_{yk} \cdot 1$, 08 with $f_{yk} = 500 \text{ N/mm}^2$ (B500B), resp. with $f_{yk} = 550 \text{ N/mm}^2$ (B550B)

^{**)} Slip within the connection under loading measured at $0.6 \cdot f_{vk}$